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ABSTRACT

Statistical shape models are widely used as a compact way of repre-
senting shape variation. Fitting a shape model to unseen data enables
characterizing the data in terms of the model parameters. In this pa-
per a Gauss-Newton optimization scheme is proposed to estimate
shape model parameters of 3D surfaces using distance maps, which
enables the estimation of model parameters without the requirement
of point correspondence. For applications with acquisition limita-
tions such as speed and cost, this formulation enables the fitting of
a statistical shape model to arbitrarily sampled data. The method is
applied to a database of 3D surfaces from a section of the porcine
pelvic bone extracted from 33 CT scans. A leave-one-out validation
shows that the parameters of the first 3 modes of the shape model
can be predicted with a mean difference within [-0.01,0.02] from the
true mean, with a standard deviation less than 0.34.

Index Terms— Image shape analysis, Image registration,
Biomedical image processing, Optimization methods, X-ray to-
mography

1. INTRODUCTION

Statistical shape models (SSM) [1] are often used to characterize
unseen shapes in terms of model parameters which can be used for
classification or regression. In order to estimate the shape model
parameters of an unseen shape, full point correspondence is usu-
ally needed to be able to project the shape into the parameter space.
Obtaining full point correspondence might not be possible in some
applications due to restrictions such as acquisition and computation
time, dosage (CT) and cost. In such applications there is a need for
registration of dense models to incomplete data and for parameter
estimation of the unseen shape.

In [2] van Assen et al. proposed a method for fitting a dense
model to sparse data. Model points near sparse data points are prop-
agated onto void areas using a Gaussian kernel in order to achieve
(pseudo-) correspondence making it possible to estimate model pa-
rameters. The framework is applied to segmentation of cardiac MRI
data and different sparsity schemes are tested. Rajamani et al. [3]
formulated an algorithm for matching a SSM to sparse digitized
points to create patient specific models for pre-operative planning.
A linear system of equations is solved to obtain a least squares fit
of the model to the digitized points. A Mahalanobis distance based
regularization term andM-estimator based weighting of the digitized
points are included in the matching algorithm. Due to the nature of
their applications both papers focus on the reconstruction error but
not on how well the actual model parameters are estimated.

In this paper the focus is on how accurate the model parameters
can be estimated. For applications where the parameters are used

for classification or regression it is important to quantify how trust-
worthy this estimate is. An iterative Gauss-Newton optimization al-
gorithm is proposed for fitting a SSM to unseen data using sampled
distance maps. It is investigated on dense data, without requiring
point correspondence and in future papers the effect of reducing the
amount of data, i.e. increasing sparsity, will be investigated. Sev-
eral authors, e.g. Golland et al. [4], have proposed representing
shapes using distance maps. This results in a more dense model
which would not be feasible in the present application.

The proposed method is applied to a SSM of a porcine bone
structure which will be used in a slaughterhouse robotic tool. In this
specific application the model parameters are interesting as they can
be used to obtain a relation with specific quality measures of the
carcasses. The method is also applicable in a range of biomedical
applications.

2. METHODS

2.1. Statistical shape models

SSM’s were proposed by Cootes et al. as a compact way of de-
scribing shape variation in a data set [1]. Let the n shapes, or in
our case 3D surfaces, be represented by k corresponding 3D points,
each arranged in a 3k vector s. The idea is to formulate a parame-
terized model of the form s = M(b) describing the variation seen
in the data, where b is a vector of shape parameters of the model
M . To exclude the effects of translation, rotation and scaling, a gen-
eralized Procrustes alignment is performed before constructing the
shape model [5]. The sample mean (̄s = 1/n

∑n

i=1 si) and sam-
ple covariance matrix (C = 1/(n − 1)

∑n

i=1(si − s̄)(si − s̄)T )
are then computed. Since the original parameter space is usually
much larger than the number of observations (3k >> n) applying
principal components analysis (PCA) on the covariance matrix is an
obvious choice for dimensionality reduction. The PCA determines
the main axes (eigenvectors φi) of variation of the data and sorts
them according to the amount of variation they describe (eigenval-
ues λi). The model can then be formulated as a perturbation of the
mean shape:

s = s̄ + Φb (1)

where Φ is the matrix composed of the eigenvectors φi.
The model parameters of a new aligned shape s′ can be obtained

by projecting it into the parameter space,

b
′ = ΦT (s′ − s̄). (2)

This is only possible if all the k points of the aligned shape are avail-
able.
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2.2. Optimization algorithm

The Lucas-Kanade algorithm for image registration was originally
formulated using image intensities [6, 7] and was typically applied
within fields such as stereo vision and motion analysis. It is an it-
erative Gauss-Newton optimization algorithm. In the following the
parameter estimation of the SSM is considered as a constrained reg-
istration problem, thus the Lukas-Kanade approach can be applied.
This allows parameter estimation without all the points being avail-
able.

Let I be the signed distance map of the input surface and T
the signed distance map of the template surface, with regions of the
template surface that are within the input surface having negative
distance. Furthermore let x = (x, y, z)T be a vector of sample
points in the distance maps, p be a set of parameters andW(x;p)
a warp of x with p. The objective function to be minimized is the
sum of squared differences between the warped I , and T ,∑

x

[I(W(x;p))− T (x)]2. (3)

This can be formulated iteratively with incremental updates of p us-
ing a Gauss-Newton scheme [6],∑

x

[I(W (x;p + Δp))− T (x)]2. (4)

For each step the parameters are updated,

p← p + Δp, (5)

and this procedure is repeated until convergence. Linearizing by per-
forming a first order Taylor expansion of eq. (4) results in,

∑
x

[I(W(x;p)) +∇I
∂W(x;p)

∂p
Δp− T (x)]2. (6)

where∇I is the gradient of I evaluated atW(x;p) and ∂W(x;p)
∂p

is
the Jacobian of the warp. Solving forΔp reveals,

Δp = H
−1

∑
x

[
∇I

∂W(x;p)

∂p

]T

[T (x)− I(W(x;p))] (7)

whereH is the Gauss-Newton approximation to the Hessian,

H =
∑
x

[
∇I

∂W(x;p)

∂p

]T [
∇I

∂W(x;p)

∂p

]
. (8)

Since I consists of distances to the surface to be registered, the
gradient (∇I) corresponds to inward pointed normals of the surface
evaluated at W(x;p). If the surface is moved along the inward
pointed normal (away from the sample x) the distance I increases.

The warp W(x;p) can be any type, e.g. rigid, affine or non-
rigid transformation with corresponding parameters p [7, 8]. In our
case the warp is W(x;p) = C(x, s). C(x, s) is the set of points
in the warped surface s, eq. (1), that are closest point to each sam-
ple in x. These are obtained using a kd-tree. The parameters p are
the first t shape model parameters weighted by the square root of
their corresponding eigenvalues, normalizing p to standard devia-
tions (p = (b1/

√
λ1, ..., bt/

√
λt)

T ) off the mean in model param-
eter space.

∇I is computed as the negative mean of the normals of the faces
connected to each point inW(x;p).

∇Ii = − 1

fi

fi∑
k=1

vk, (9)

where fi is the number of faces connected to the ith vertex/point
and vk is the outwards normal of the kth connected face. Using
the angle weighted normals would likely give a better estimate of
the mean curvature at the vertices, but it would be computationally
more expensive. The Jacobian of the warp for the ith sample in x

is composed from the respective counterparts in the eigenvectors of
the model.

∂W(xi;p)

∂p
=

⎛
⎝ φxi,1

√
λ1 . . . φxi,t

√
λt

φyi,1

√
λ1 . . . φyi,t

√
λt

φzi,1

√
λ1 . . . φzi,t

√
λt

⎞
⎠ (10)

In the above formulation the sample vector x can be constructed
arbitrarily, (within a sensible range from the surface) and the opti-
mization algorithm will seek to minimize the rms error between the
distance maps. It is therefore possible to estimate the model param-
eters without having full point correspondence.

To estimate p requires an initial estimate, which in this case is
p = 0 which corresponds to the mean shape of the shape model.
By applying equations (7, 9, 10, 8 & 5) we obtain a new estimate
of Δp that minimize a first order estimate of a quadratic surface to
the parameter space. If this is far from the global optimum, the es-
timate will be inaccurate. To rectify this a line search is applied at
each iteration if the full step did not reduce the cost function. This
is initialized with a small step size, which doubles until one step be-
fore the cost function starts to increase, which ensures a reasonable
tradeoff between computations and optimum step size.

To improve speed several papers, e.g. [7, 8], propose to formu-
late the Lukas-Kanade algorithm in the inverse compositional way
making it possible to pre-compute several steps, especially the Hes-
sian in eq. (8). This is beneficial if the sample vector x is very large,
which it is not in the present application. Furthermore applying the
inverse compositional algorithm would require the use of surface in-
formation from the template image, which may not be feasible to
acquire.

2.3. Validation

The validation is performed in a leave-one-out scheme (LOO), where
the model parameters for each surface i are estimated using a SSM
constructed using all but the ith surface. The true set of parameters
are found by projecting the aligned surface into the parameter space
of the model using eq. (2). The actual parameter estimates and the
rms errors (point-to-point) are then compared. Only absolute dis-
tances less than 5 mm are included when computing the rms error in
order to reduce the effect of outliers which can occur due to missing
and non-corresponding regions.

3. DATA

The method is applied to a data set consisting of 33 cases of 3D sur-
faces from a section of the porcine pelvic bone. Implicit surfaces are
extracted from CT scans using radial basis functions [9] from which
the surfaces are reconstructed as triangular meshes. The surfaces of
the bone of interest are disconnected from the skeleton by planes and
therefore have two open ends. Furthermore they would have genus 1
topology, i.e. topological similar to a torus, if the ends were closed.

Correspondence is obtained using the iterative closest point
(ICP) algorithm [10] using a similarity transform (translation, rota-
tion and scaling) extended with a point-to-surface step determined
by a search along the direction of the estimated vertex normal to
the other surface. A reference shape is constructed by initially per-
forming registration of a specific shape to the other shapes, then
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computing a new reference shape as the mean, performing registra-
tion of this to all shapes until convergence of the mean shape. The
reference shape consists of 3815 vertices and 7397 faces.

Choosing the number of modes (t) to include in the model is a
tradeoff between including the general intrinsic variation of the data
and excluding noise. Applying parallel analysis (PA) as suggested
by Horn [11], results in 7-9 modes of variation to be included for the
different LOO models. PA only includes modes that contain more
variation than can be explained by noise, i.e. modes with intrinsic
variation less than the noise level are excluded.

Since we investigate the parameter estimation ability of the al-
gorithm for this specific data set, the sample vector x is composed
of the full point set of the surface to register the model to. T (x) is
0.

4. RESULTS

Figure 1 shows the first 3 modes of variation (rows) in one of the
LOO models, perturbed -3 std. (left column) and +3 std. (right col-
umn). The middle column is the mean shape, with the first 3 and 7
modes containing 45% and 65% of the variation in the data, respec-
tively.

Fig. 1. Three principal modes of variation (rows) cover 25%, 12%
and 8% respectively of the total variation in the data. Left and right
columns denote -3 and +3 std. from the mean shape (middle col-
umn). The color coding indicates the absolute distance in mm to the
mean shape.

When estimating shape model parameters errors accumulate
through modes and it might not be possible to estimate more than
the first few of modes. If the estimate of the first mode is incorrect,
the other modes try to compensate in terms of reducing the rms
error of the point-to-point distance. With that in mind 3 schemes
are reported, one where all the model parameters are estimated in
a combined optimization (comb.) and 2 sequential schemes where
only the last mode is estimated, fixing the previous modes to the
estimated value (seq-est), and to the true value (seq-true). The latter
scheme is included for comparison even though the true parameters
would not be accessible in an application. Still it gives an indication
of the error levels that should be expected.

In the 3 schemes the true pose is used as initialization and pa-
rameter estimates and rms errors compared when including from 1
to 7 modes. The true pose is defined as the pose obtained from the
ICP registration, applying the similarity transform. The effect of not
having the true pose will be investigated in future work.

Modes Comb. Seq-est Seq-true
1 0.01 (0.33) 0.01 (0.33) 0.01 (0.33)
2 -0.07 (0.34) -0.01 (0.34) 0.02 (0.35)
3 -0.04 (0.56) 0.02 (0.32) -0.01 (0.32)
4 -0.07 (0.76) 0.03 (0.53) 0.04 (0.52)
5 0.07 (0.58) 0.04 (0.49) 0.01 (0.43)
6 -0.21 (0.97) -0.07 (0.42) -0.06 (0.47)
7 -0.55 (1.08) -0.17 (0.98) -0.16 (0.76)

Table 1. Difference between estimated and true parameter values
for the three schemes when estimating 1 through 7 modes. Mean
and (std.) are reported.

Figure 2 and table 1 show the mean and std. of the difference
between the estimated and true values of the parameter estimates in
the LOO validation. For the majority of cases the mean is within
±0.1 std. from the true value, which seems reasonable. The std. of
the difference is more interesting, since it gives an idea of how far off
most of the estimates are. When estimating 1 or 2 modes the three
schemes approximately have the same std. of the difference, less
than 0.35. When estimating 3-6 modes the two sequential schemes
have a std. within 0.53, while the std. of the combined scheme
only is within 0.76 when estimating 3-5 modes. This shows that the
parameter estimates for the combined scheme try to balance each
other out, resulting in less reliable estimates.
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Fig. 2. Difference between estimated and true parameter values for
the three optimization schemes.

Figure 3 shows the mean rms errors for the three parameter es-
timation schemes and for the true set of parameters. For the initial
set of parameters, the mean rms error is 1.85 mm. It shows that
the more parameters that are estimated in the combined scheme, the
more likely the optimization is to converge to a local minima, where
the rms error is significantly higher than for the true set of parame-
ters. For the seq-est scheme the difference is within 0.01 mm for 1-5
modes. This indicates that the seq-est scheme is preferable to the
combined scheme, revealing similar rms values as for the true pa-
rameter values when using 1-5 modes. The std. of modes higher than
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the third mode are substantially higher than for the first three modes,
so including more than 3 modes should depend on the acceptable
level for the std. of the difference. For the present application it is
suggested to include 3 modes.

Figure 4 shows the mean and std. of the rms error for each sur-
face point plotted on the mean surface, when 3 modes of variation
are used. The error is nicely distributed over the central parts of the
shape, with the main errors located at either end and along the edge
of the top right part of the hole. The mean rms error is 1.50 mm and
the mean std. is 0.59 mm.
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Fig. 3. Mean rms error of leave-one-out validation for different num-
ber of modes included, the std. is 0.12 mm. The mean value of the
initial rms error is 1.85 mm.
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Fig. 4. Mean (a) and std. (b) of rms error, in mm, for each point
plotted on the mean shape and reconstructed using 3 modes. The
mean rms error on the surface is 1.50 mm. and the mean of the std.
is 0.59 mm.

5. CONCLUSION

An iterative Gauss-Newton algorithm is applied to estimate statis-
tical shape model parameters for unseen data. The optimization is
driven by sampling in distance maps, which can be done arbitrarily.
This enables the estimation of model parameters without the need
of full point correspondence, which would be needed if the aligned
shape were to be projected into the parameter space.

For applications where it is of interest to fit a dense model to
sparse data in order to estimate model parameters e.g. for classifi-
cation or regression purposes this method can be applied. This is
important in applications where time, dosage, cost etc. are issues.

Leave-one-out validation of parameter estimates for a data set
of 3D surfaces of a specific porcine bone shows that the three pri-
mary modes of the statistical shape model can be estimated with a
mean difference between [-0.01,0.02] std. and with a std. of the
difference within 0.34. This is done using a sequential estimation
scheme where each parameter is estimated sequentially with previ-
ous parameters fixed. If 6 modes are estimated the upper limit of
the std. of the difference increases to 0.53 and the mean difference
is between [-0.07,0.04] std. The difference between the true and
the estimated rms error is below 0.01 mm. The rms error decreases

when increasing the number of modes, but the parameter estimates
are only reliable enough for the first 3 modes in the present applica-
tion.

The sample vector that drives the optimization can be arbitrarily
defined, which is a topic for future work, along with the introduction
of weights on the cost function. Other topics to investigate include
applying more localized models, i.e. ICA-models, varimax rotation
or sparse PCA.

The statistical shape model will be used in a slaughterhouse
robotic tool and the parameters are of interest as they can be used
to obtain a relation with specific quality measures of the carcasses.
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